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Effective Shell Charge of Electrons on a Sphere 
A Discussion of Hund's Rules, Negative Ions and the Chemical Bond 
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By ignoring the radial motions of the electrons in the valence shell of an 
atom one formally obtains the problem of electrons constrained to move on 
a sphere. This sphere will be attracted by the core as if it had an effective 
charge equal to the number of electrons on it minus a certain quantity resulting 
from the mutual repulsion of the electrons. This "effective shell charge" is 
a very simple, but still precise and quantitative concept which provides a 
good understanding of many empirical facts about atoms and ions, most 
notably Hund's  rules. Implications for negative ions are discussed and 
chemical bonding is touched briefly. A qualitative difference in physical 
behavior for small and large sphere radii is pointed out. 

Key words: Electrons on a sphere - Screening - Effective charge - Hund's  
rules - Negative ions - Chemical bonding. 

1. Introduction 

The basic assumption in most treatments of atoms is that the electrons move in 
a spherically symmetric field and this has proved to be an excellent approximation 
for most purposes. The ground state of the majority of free atoms is, however, 
not spherically symmetric. On the contrary Hund's  rules [1] tell us that open 
shell atoms maximize first spin, then orbital angular momentum. In modern 
theoretical jargon [2], this phenomenon is referred to as "spontaneous symmetry 
breaking"; the ground state solution has a lower symmetry than the equations 
of motion. In this article I will try to explain the physical origin of Hund's  rules 
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and a few other empirical facts about atoms and ions using the simple model 
system of electrons on a sphere. This is an idealized model of the real situation 
of a type often studied by theoreticians since it is usually the only way to isolate 
and pin down certain aspects of reality that are otherwise hopelessly entangled. 
It is known that the radial one-electron functions for a given n, l-shell peak at 
a relatively narrow range of r-values. Thus it is a physically reasonable idea that 
the angular interactions of these electrons can be studied as if they were moving 
on a sphere of appropriate radius. The sphere as a whole can then be thought 
of as being attracted by the (spherically symmetric) core as if it had a certain 
effective charge which will depend on the distribution of electrons on it according 
to a precise formula given below. By doing so, one arrives at Hund's rules since 
those shells which have the maximum effective shell charge turn out to be 
precisely those which maximize spin and then orbital angular momentum for 
that spin. 

The literature contains many theoretical and computational studies of Hund's 
rules. The most exhaustive one is a review article by Katriel and Pauncz [3]. 
Their main result is that zeroth order wave-functions which reproduce the correct 
energy ordering of the multiplet levels but violate the virial theorem because 
the energy differences all sit in Wee (electron-electron repulsion) can be subjected 
to a radial scaling that make them obey the virial theorem without having their 
energy ordering changed. Many other studies have stressed the importance of 
anisotropy or angular correlation (the word here taken in its broadest sense i.e. 
including Fermi correlation) in explaining the energy ordering. Kutzelnigg et al. 
[4] were probably the first. More recently Shim and Dahl [5], Warner et al. [6] 
and Thakkar and Smith [7] have discussed this point of view further. The present 
study is in agreement with and to some extent unifies the two above mentioned 
approaches. 

The electrostatics of electrons on a sphere has previously been discussed in terms 
of single configuration wavefunction peak probabilities by Linnett and Poe [8] 
and later, more pertinently by Dahl [9]. These studies as well as classical multiplet 
theory, however, do not in themselves explain Hund's rules unless combined 
with ideas of radial scaling, since, as has been rather slowly realized [3], multiplet 
energy differences simply do not sit in the electron-electron repulsion part of 
the energy. In the present approach the radius of the valence shell appears 
explicitly in the formulae and, as discussed at the end of Sect. 3, one must not 
think of it as having the same value for different levels in real atoms. 

Ezra and Berry [10] have recently presented accurate solutions for two particles 
on a sphere as a model for doubly excited states of atoms. The solutions presented 
in this article only become "exact" in the two extreme limits of zero and infinite 
sphere radius. It is one of the main points of the present study that the nature 
of the solution is different in the small and large radius (atomic units) limits. 
Thus the model casts some light on the qualitative differences between positive 
and negative ions which may be regarded as physical representatives of these 
two limits. 



Effective Shell Charge of Electrons on a Sphere 367 

2.  E f f e c t i ve  She l l  C h a r g e  

The interactions of a set of electrons with the radial part of their (one-particle) 
wave-functions peaked at roughly the same distance r from the nucleus will here 
be treated approximately by assuming that the electrons are constrained to move 
on a sphere of radius r. Consider the electrostatic potential energy of N negative 
unit charges on a sphere of radius r attracted by a positive charge N +q  at its 
center: 

N N + q  ~ 1 
~b =-Y~ + (1) 

1 r ,<,lri--rjl 

where 

[rel = r; i = 1, 2 . . . . .  N .  (2) 

We introduce the notation 
2 

r i  " ri = r c o s  Oi, (3) 

and 

o(Oii) = ~ Pt(cos Oii) (4) 
/=0 

where Pt are Legendre polynomials (see e.g. [21] formula B99, p. 497), so that 
(1) can be written 

05 (N +q)N+ I ~ o(O,i)" (5) 
r r i < i  

The number of terms in the sum over i < ]  is N ( N - 1 ) / 2  so that the operator 
defined as: 

N 
2 • o(O,i) (6) 

g = N ( N  - 1)i<i 

will have expectation values (which we denote 6) corresponding to the arithmetic 
average of the terms in the sum i.e. inverse electron-electron distances on the 
unit sphere. Using (6) we can write (5) as follows 

ck = - (N + q)O(N, q)/r (7) 

where (~ is the "effective shell charge" operator: 

1 ( N - l )  A 
O ( N , q ) ~ N [ 1  2 ( - -N-~  oj.  (8) 

Effective shell charge so defined, is a direct measure of how strongly the shell- 
is pulled by the charge inside. If the particles on the sphere were non-interacting 
it would simply reduce to N, the total charge on the sphere. The fact that the 
particles repel each other makes Q = ( t~)<N,  the precise value depending on 
the angular distribution through S and on the charge inside: N+q.  One notes 
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that the smaller the charge inside the more sensitive is Q to the angular 
distribution. Note that q is defined so that it is zero for the outermost shell in 
neutral atoms, positive for inner shells (d and f electrons) and positive ions, 
negative for negative ions. This implies neglect of penetration into the core, an 
obvious limitation of the present model. 

3. Electrons on a Sphere of Small Radius; Hund's Rules 

So far we have only discussed the potential energy operator for the electrons 
on the sphere. The kinetic energy operator is obtained from the usual expression 
in spherical polar coordinates by removing the derivatives with respect to r and 
is thus, in atomic units 

- -1  r,r 1 0 2 1 O sin Oil// 
T = ~r2 iZ=l s-~n2 Oi O~ 2 +sinO, oOl 

where ~ is the orbital angular momentum operator for electron i. To solve the 
complete SchrSdinger equation 

5,1  +-  . - -  (N q)N r i<j 

(cos 0ii = cos 0i cos Oi + sin 0i sin 0j cos (~0~- q~j)) for our model problem, exactly 
(analytically) is unfortunately not possible. The nature of the solutions is dis- 
cussed further in the next section. (For the case of two particles see Ref. [10].) 
Here we make the usual assumption that the electron-electron repulsion can be 
treated as a first order perturbation and that therefore the eigen-states can be 
constructed as products of spherical harmonics, Yl,~(fl, ~), eigen-states of /-2. 
Eigen-states of S~ (z-component of total spin) and Lz (z-component of total 
orbital angular momentum) with the correct permutational symmetry is then 
obtained as usual by multiplying each Yzm with a spin-function (taken to be 
eigen-function of ~z) and anti-symmetrizing over all electron coordinates. 
Expectation values of the operator 8 as defined in Eq. (6) over these Slater 
determinants can be obtained in exact algebraic form using well-known formulas 
and techniques from atomic multiplet theory as given by Condon and Shortley 
[11] or Slater [12]. In order to illustrate the connection between effective shell 
charge and the nodal structure of the angular wave-functions Tables 1 and 2 
and Fig. 3 display such single determinant expectation values. The g-values are 
calculated from the usual expression for the determinantal matrix-element of 
the two-particle operator g, in terms of coulomb and exchange integrals. (For 
these one can then use the formulas (13-20) and (13-22) in Slater [12] with F k 

and G k equal to one.) The states of real atoms are, however, normally also 
eigen-states of s and g2 SO linear combinations of such determinants that 
diagonalize these operators are physically more relevant. The relative 8-values 
for all such multiplets arising from shells containing only p or only d electrons 
are displayed in Figs. 1 and 2. (For energy level ordering only relative &values 
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are  of in te res t ;  these  are  easi ly  g e n e r a t e d  using S la te r  [12] A p p e n d i x  21a  pu t t ing  
F 2 = F  4 =  1.) 

Since 6 appea r s  with nega t ive  sign in the  effect ive shell  charge  fo rmu la  (8) the  
smal le r  6 is the  la rger  is the  effect ive shell  charge  (this appl ies  to  real  a toms  
only  if q can be  though t  of as essen t ia l ly  constant) .  T h e r e f o r e  the  re la t ive  o r d e r i n g  
of the  & v a l u e s  is the  p r e d i c t e d  o r d e r i n g  of the  ene rgy  levels in the  p r e se n t  
s cheme  (this is fu r the r  d i scussed  below).  A s  one  sees in Figs.  1 and  2 H u n d ' s  
rules  cor rec t ly  give the  lowest  levels  in each  of the  six d i f ferent  cases and  also 
a rough  idea  of the  o r d e r i n g  in genera l .  No te  espec ia l ly  the  r ising t r end  with 
dec reas ing  o rb i t a l  angu la r  m o m e n t u m  (to the  r ight  in the  figures). 

Table 1. 6-values for maximum spin single determinants corresponding to configurations l n with 
l = p, d, f and Sz = n/2 (symmetric spin function). All different determinants given except those that 
differ only in the sign of Lz. They are specified through the magnetic quantum numbers m of the 
included Ylm except for d 3, fs, and f4 for which those of the 2l+1 m-values not included are 
specified. Note that minimum ~ always corresponds to maximum Lz for these completely anti- 
symmetric angular functions (maximal number of Fermi-nodes) 

L~ = Y~ m 6- values m- values of spherical harmonics 

2 p 
1,0 0.80000 

d 2 d 3 

3,2 0.81633 0.84354 1,2; 0,2 
0 0.84354 0.85261 -1,1 
1 0.87075 0.86168 -1,2 
1 0.89796 0.87075 0,1 
0 0.92517 0.87982 -2,2 

d 4 

2,l,0 0.85714 :2 :5 
5,4 0.84029 0.88179 2,3; 1,3 
3,2 0.85566 0.88333 0,3; 0,2 
3,2,0 0.87103 0.88487 1,2; -1,3; -1,1 
1,1,0 0.91714 0.88948 -1,2; -2,3; -2,2 
1 0.94788 0.89255 0,1 
0 0.99400 0.89716 -3,3 :3 
6,5 0.85054 0.86847 1,2,3; 0,2,3 
3 0.86079 0.87359 -1,1,3 
4,1,0 0.87616 0.88128 -1,2,3; -2,0,3; -2,0,2 
4 0.88128 0.88384 0,1,3 
2,0 0.88640 0.88640 - 1,1,2; -3,1,2 
3,3,2,2 0.89153 0.88896 -2,2,3; -2,1,3; -1, 0,3; 0,1,2 
1,1,0 0.90178 0.89409 -3,1,3; -2,1,2; -3,0,3 
1 0.90690 0.89665 -1,0,2 
2 0.91714 0.90177 -3,2,3 
0 0.92227 0.90433 -1,0,1 

3,2,1,0 0.88640 
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Table 2. 6-values for Sz = 0 single determinants corresponding to configurations 
l 2 with l = p, d, f. All possible combinations of m quantum numbers listed. For 
notation see Table 1. Comparing with Table 1 one notes how the absence of the 
Fermi-nodes in the wave-functions given here increases the coulomb-repulsion 
significantly thereby decreasing the effective shell charge 

Lz = 5~ m 6-values m-values of spherical harmonics 

p2 

1 0.92000 0,1 
0 1.04000 -1,1 

d 2 

2 0.93197 O,2 
3,1 0.95011 1,2; -1 ,2  
1 0,98639 0,1 
0 1.05669 -1,1  
0 1.08390 -2 ,2  

f~ 
3 0.92492 0,3 
4,2 0.93813 1,3; -1 ,3  
2 0.97773 0,2 
5,1 0.97990 2,3; -2 ,3  
3,1 0.98135 1,2; -1 ,2  
1 1.01809 0,1 
0 1.04989 -2 ,2  
0 1.07148 -1,1 
0 1.11951 -3,3  

ol 
I t 

o3 

o2 

o2 

~2 p3 
m4 

D P S -  D P S ~  

Fig. la,b. Energy ordering for multiplet levels of p-electrons as given by the effective shell charge 
concept. Shown are the relative t~-values for the states; the orbital angular momentum is indicated 
on the horizontal axis and increases to the left, the spin multiplicities, 2S + 1, are given explicitly at 
each state and are also distinguished by different symbols. Note that the pattern of levels for p4 is 
the same as that for p2 (this corresponds to two holes in the spherically symmetric shell p6) 
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It is important tlaat one does not think of the radius r of the valence shell as 
the same for all levels in the multiplet. The valence shell is prevented from 
collapsing into the core region by the Pauli-principle (and/or centrifugal forces). 
When the shell charge increases the shell contracts against these forces and the 
kinetic energy goes up but the virial theorem ensures that the potential energy 
goes down twice as much. The net result is a contracted atom with lower energy. 
This point of view leads to a physical understanding of the radial scaling of 
Ref. [3]. 

4. Electrons on a Sphere of Large Radius; Negative Ions 

As one can see in Eq. (8) the smaller q, the more important • will be in 
determining the effective shell charge. I.e. neutral atoms and negative ions will 
be much more sensitive to the angular behavior of the wave-functions than 
positive ions. This conclusion can be made without any consideration of the 
radius of the valence shell sphere (it does not appear in the formula). However, 
this is not all. 

As Eq. (10) shows, the radius r appears as a parameter in the Schr/Sdinger 
equation for the shell electrons in such a way, that in the limit when r goes to 
zero the kinetic energy operator dominates completely. In this limit the solutions 
discussed in section 3 become exact. On the other hand, when r goes to infinity 
the potential energy operator becomes dominating and it is no longer meaningful 
to treat the two-particle operator as a perturbation as in the previous section. 
In this limit it is more consistent with standard quantum mechanical approxima- 
tion methods to consider eigen-states of the potential energy operator as approxi- 
mate energy eigen-states. ~ 

It is a well known experimental fact that negative ions are big. One can therefore 
predict that uncorrelated wave-functions (Slater determinants of spherical har- 
monics) do not describe the angular motion in the outer shell of negative ions 
or large radius atoms particularly well. Eq. (10) leads one to believe that 
eigen-states of the g-operator might be better zeroth order approximations to 
the energy eigen-states in these situation~ the one-electron operators now acting 
as perturbations. The eigen-states of 8 are states corresponding to definite 
geometric arrangements of the particles (or to be more precise, of the centers 
of charge of non-overlapping spherical particle distributions) on the sphere and 
there will be a continuum of such states (depending on 2 N - 3  parameters). 
Among these the only ones of special interest are those that minimize 6. The 
bottom curve in Fig. 3 shows 8-values for such states; they correspond to the 
well known geometries: two antipodal particles, equilateral triangle, tetrahedron 
etc. Note that it is not necessary for the particles to be localized to points (this 
would correspond to infinite kinetic energy) to make 6 minimum. As already 

1 In this case the wave-function (probability amplitude) will depend mainly on the relative coordin- 
ates, 0ij, of the particles; the dependence of the positions, 0i, q~, themselves will be a second order 
effect. In Ref. [10] results are presented for two different sphere radii and the increase in angular 
correlation with sphere radius is clearly visible 
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F i g .  3 .  8-values for single determinants that maximize Sz and then Lz (thus estimating the lowest 
multiplet without diagonalization). The number of electrons, N, is given on the horizontal axis. The 
curves indicate successive addition of electrons to a shell. Crosses on the lowest (dot-dash) curve 
correspond to minimum 6-values for fixed geometry eigen-states of 6; these are: an antipodal pair, 
and equilateral triangle, a tetrahedron, a trigonal bi-pyramid, an octahedron, a pentagonal bi- 
pyramid, and an anti-prism. The large N limit of this curve is 3/4.  Note the minimum in the 
s 2p,_ curve at s 2p 3 which coincides with a maximum in the ionization-potentials at the corresponding 
atoms. Note also the considerable reduction in going from the gound state, s2p 2, of Carbon to the 
sp a "tetrahedral"  valence state and the even more dramatic reduction in going from s 2 to sp, the 
configuration of the outer shell of the negative Helium ion [22] (ls2s2p, 4p) 
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mentioned, particles having spherical non-overlapping probability distributions 
will make up eigen-states of 8. 

I will now consider the question: how negative can an atomic ion get? The 
discussion will be purely electrostatic and will reveal some rather fundamental 
mathematical properties of the Coulomb interaction. It is possible that they are 
of small practical significance but the fact that they have hitherto been largely 
ignored in literature is by no means a guarantee that this is the case. It is probably 
safe to say that ions of charge less than -1  will never be stable with respect to 
the emission of an electron to infinity but, as the argument below indicates, 
shortlived species of multiple negative charge should exist. Assume a core of 
net charge +1 ( = N + q )  and thus insert in Eq. (8) 

q=l-N.  (11) 

If one now increases N (the number of particles in the shell outside the core), 
the effective shell charge must eventually change sign. This means that there is 
no longer a net attraction of the shell to the unit charge at the center; the 
electron-electron repulsions dominate and such a system would dissociate. At 
what N-value does this happen? If one successively inserts N = 1, 2 , . . ,  and the 
corresponding minimum 8-value (corresponding to the most favorable geometric 
arrangement of the electrons (in the sphere) from the bottom curve in Fig. 3 in 
the effective shell charge formula 

O = N I l  - (N - 1)8/2] (12) 

one finds that the limit N is four. I.e. for N > 4 0  will always be negative but 
a single proton (for example) can attract four electrons to make a triply charged 
negative ion as long as the geometry is favorable. What happens if one inserts 
some large core charge C=N+q in (8)? The limiting minimum 8-value for 
large N is (Fig. 3) 0.75 so one finds that now the sign change in O comes when 

N = (8/3)C (13) 

which means that e.g. a core of charge C = 10 can attract a sphere with N = 26 
electrons. These numbers may be of some relevance in plasma physics but give, 
as already mentioned, only crude estimates since the kinetic energy has been 
completely ignored. They also illustrate how dramatic correlation effects can 
get, albeit under rather unlikely circumstances. 

5. A General Mechanism for Energy Reduction in Many Electron Systems; 
the Chemical Bond 

There is a fair amount of literature on the precise physical mechanism behind 
the energy reduction in chemical bonding. Here I only wish to briefly point out 
how the concepts and points of view of this paper have some relevance also to 
this problem. Of central importance is the virial theorem 2 ( T ) = - ( V )  which is 
valid for the electronic energy in the separated atoms as well as at the equilibrium 
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geometry in the molecule. As a consequence any net energy reduction must 
come in the form of potenital energy and the kinetic energy must increase by 
half the same amount. The following view of the mechanism behind the energy 
reduction in (covalent) bonds between open shell atoms is consistent with these 
facts: the tendency, summarized by Hund's rules, of open shell atoms to 
maximally break the approximate spherical symmetry is strongly enhanced by 
the fact that the effective field for the valence electrons ceases to be spherically 
symmetric when bonding takes place. This presumably leads to a further increase 
in effective shell charge which, in turn, enables the atom to contract and shift 
charge density nearer the nucleus as discussed at the end of section 3. The 
absolute value of the electron-nuclear attraction energy thus increases and the 
total energy goes down. The detailed behavior of the charge density in bonding 
can be rather complicated (see Bader [13] for a review) but on the whole it 
seems to be consistent with this point of view. 

It is also tempting to see part of the explanation for the success of the valence 
shell electron pair repulsion theory (VSEPR) in Fig. 3. This theory predicts 
equilibrium geometries of molecules (see Gillespie [14]) and, in this context, it 
is significant that it is always the electrostatically favorable arrangements that 
maximize the effective shell charge of the valence shell. 

6. Discussion and Conclusions 

Though the specific model problem of electrons on a sphere only has been 
treated before, as far as I am aware, in Ref. [10], many others have studied 
atoms along similar lines. The effective shell charge concept is distinct from but, 
of course, related to concepts that go under names such as screening, shielding 
or effective (core) charge and that have been useful tools since the beginning of 
atomic physics. In recent times there has been an increased interest in this type 
of ideas in connection with the HAM-method of ]ksbrink et al. [15] and with 
the work of Kregar [16] and Kregar and Weisskopf [17]. A very complete 
collection of atomic shielding efficiencies have recently been compiled by ~sbrink 
[18]. The main objective in these studies is to solve the radial problem i.e. to 
find the optimal exponents in Slater type one electron functions, and in this they 
differ fundamentally from the present study. 

For the radial behavior of atoms there have long existed various simple models, 
especially the celebrated Thomas-Fermi approximation which, properly handled, 
can reproduce the trends of increasing radii and decreasing ionization potentials 
through the periodic table quite well [19] (in this connection see also Rau et 
al. [20]). The weakness of all such models is that they are usually quite unable 
to take account of the pronounced shell structure of atoms. This article attempts 
to remedy this by presenting a model which has the shell structure as its starting 
point and basic assumption. A b  initio calculations are today capable of reproduc- 
ing most experimental facts about atoms but this does not mean that one can 
do away with the profound understanding of the underlying physics that always 
comes from the simplest models and approximations. 
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